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: - : SIGNIFICANCE AND EXPLANATION ’—4
/ Penalty function minimization is a useful technique for converting x
constrained optimization problems to simpler unconstrained optimization ~~

problems. One difficulty with this approach has been the determination

of the size of an adequate penalty parameter. I—r_r\ this workf‘;;\shovsﬂhow

to choose precisely the penalty parameter in order to meet any preassigned :-‘:

——. AT e b .

accuracy. In addition we use penalty functionsAto obtain bounds on the 1

- size gf a sgclu'tiion of a constrained optimization problem without solving _j:;‘,;
it. iléea;;o ;how;‘!\ow ez; results can be used to solve huge sparse linear :*:

programs to any desired degree of accuracy. -
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SOME APPLICATIONS OF PENALTY FUNCTIONS Lo
IN MATHEMATICAL PROGRAMMING l;jﬂ
0. L. Mangasarian e
e
1. Introduction C ]
We consider in this work the constrained minimization problem {i
(1.1) (x) o
1.1 min f(x), X:= X, n X v 4
xeX 0 1 a '»'.:*
where X0 and X1 are subsets of the n-dimensional real space R" which
have a nonempty intersection X, and f: X0 + R, Associated with the ;L;:
above problem is the classical exterior penalty problem (3,2,1] :f;f
(1.2) min P(x,a):= f{x) + aQ(x) :513
XeXO S
o
where o is in R, the nonnegative real Tine, and Q(x): X0 + R, such ey
SR
that Q(x) = 0 for xeX, else Q(x) > 0. We have two principal applica- jrf;
tions in mind regarding the penalty problem (1.2). The first application, S
which employes in addition to (1.2) the recent boundedness and existence j{ii
results for monotone complementarity problems [10] and which is described R
in Section 3 of the paper, gives existence and boundedness results for a i
convex program obtained from (1.1) and the associated dual problem. In S
particular we show in Theorem 3.1 that if there exists a point which is

feasible for a primal convex program and is interior to the constraints of

its Wolfe dual [12,5], then the primal problem has a solution which is
easily bounded in terms of the feasible point, and that there is no duality f}“L

gap between the primal problem and its Wolfe dual. Theorem 3.2 shows that

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
This material is based on work sponsored by National Science Foundation
Grant MCS-8200632.
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if there is a point which is interior to the constraints of a primal convex
program which is also feasible for the associated Wolfe dual, then the
Lagrangian dual [4,1] of the convex program has a nonempty solution set
which is easily bounded in terms of the feasible point, and in addition
there is no duality gap between the primal problem and its Lagrangian dual.
In Section 4 our main concern is the recasting by means of an exterior
penalty function of the standard linear programming problem as a quadratic
minimization problem on the nonnegative orthant in the spirit of previous
work [6,7,8]. The principal new result here is to show how to obtain a
precise value of the penalty parameter which allows us to satisfy the
Karush-Kuhn-Tucker optimality conditions [5] for the linear program to any
preassigned degree of precision. Theorem 4.1 shows that this can be done
by minimizing a convex quadratic function on the nonnegative orthant for
only two values of the penalty parameter. Iterative methods developed
in [6,7,8] can solve by this approach very large sparse linear programs
which cannot be solved by a standard linear programming simplex package [8].
Because of the key role played by exterior penalty functions in this
f work, we give in Section 2 some fundamental results regarding these functions

in a form convenient for deriving our other results. Although some of these

penalty results are known under more restrictive conditions [3,2], some are
E new. For example, Theorem 2.3 shows that by solving only two exterior
penalty function minimization problems, we can obtain an optimal point which
is feasible to any preassigned feasibility tolerance. Theorem 2.8 shows
that under rather mild assumptions each accumulation point of a sequence of
solutions of penalty functions, corresponding to an increasing unbounded

sequence of positive numbers, solves the associated constrained optimization




problem., Furthermore the corresponding sequenée of products of the
:_ penalty parameter and the penalty term tends to zero.
C:f We briefly describe our notation now. Vectors will be column or row

g vectors depending on the context. For a vector x {in the n-dimensional real

space R", [[x[| will denote an arbitrary norm, while leﬂp will denote the

n ——
p-norm ”"”p” (iz]lxilp)p for 1 <p < and ||x]l¢:-1l:::n Ix,I. where x,

is the i-th component of x; x, will denote the vector in R" with compo-

+
nents (x,{)i = max {xi,O}, i=1,...,n. A vector of ones in any real space
will be denoted by e. For a differentiable function L: R" xR"+R, V,L(x,u)
will denote the n-dimensional gradient vector %L(x.u), i=1,...,n, while
for f: R" + R, VF(x) will denote the n-dimensfoina'l gradient vector. The

set of vectors in R" with nonnegative components will be denoted by R".
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2. Some Fundamental Properties of Exterior Penalty Functions

We collect in this section some fundamental properties of exterior
penalty functions in a form convenient for our applications and under more
general assumptions than usually given [3,1]. We begin with some elementary
but important monotonicity properties for solutions of penalty problems.

2.1 Proposition Let x;eX, be a solution of ’21;1 Px,a;) for i=1,2
0

with ay > o 2 0. Then
(2.1) Qlxy) < Qlxg)s Flxg) g Flxy)s Plxga0) £ Plxgs0)

Proof Addition of P(x,.a,) < P(x{,a,) and P(xy,0;) < P(xy,0¢), gives,
together with a, > a;, the inequality Q(xz) < Q(x1). which in turn
together with P(xj,ay) £ P(x5,0;), and o 20, gives f(x) < f(x,).

We also have that

P(x]!a'l) : P(XZ,G-') .<_ P(xzsaz) D
2.2 Proposition Let im; f(x) > -, let a >0 and let x(oz)exO be such
Xe
that P(x(a),a) = min P(x,a). Then
XeXo
(2.2) f(x(a)) < inf f(x)
xeX
If x{(a)eX then
(2.3) f(x(a)) = min f(x)
xeX

Proof For any e > 0 pick x(e)e X such that

f(x(e)) < inf f(x) + ¢
xeX
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X

' . Then

: £

4 e+ inf f(x) > f(x(e)) = P(x(e),a) 2 P(x(a),a) 2 f(x(a)) N

- Xe AN

: R
Since x(a) does not depend on ¢, (2.2) follows by letting ¢ approach ‘

zero. If x{a) is also in X, then (2.3) is obviously a consequence of

.

: (2.2). 0
The following simple theorem shows how, for any desired feasibility
tolerance § > 0, solving the penalty problem (1.2) for only two values of
the penalty parameter a will yield a point Xy € )(o such that Q(xz) <6
¢ and f(xz) < inf f(x). Hence if & chosen sufficiently small, Xy is an
X xeX Ve
g approximately feasible optimal solution for the minimization problem (1.1). S
2.3 Theorem Let & > 0, ay > 0, let inf f(x) > -», let XeX and let S
w xeX E
-‘ .'l(‘-
= P(xpaq) = min P(x,0). If f(R) < f(x,) then X solves min f(x), else A
. xeX xeX b
- 0 n
- A
" for .::,:
. £(R) - £(x;)
o (2.4) ay > o and a, 2 — o=
& it follows that ,
~"; (2.5) X € Xo, Q(xz) s 8, f(xz) < inf f(x) ;‘:.._-;7_:_
: xeX IO
? 3'-5:\
: Plxgsag) = 10 Plxiay), x5 eXg L
A Xy RN
. o -.'
< o
- Proof First note that if f(R) < f(x,) then by (2.2) X solves min f(x). j-"ff:‘:::
xeX e;‘"» *
& Suppose now that f(x) > f(x;) and (2.4) holds. Then L—
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(2.6) F(xy) + a)Qlxy) < F(R) + aQ(R) = F(R)

Hence by (2.4), (2.1) and (2.6) respectively it follows that

f(X)- flx))  F(X)-flx,)
8 > >
- % - %

2 Q(x,)

which establishes the first inequality of (2.5). The second inequality of
(2.5) follows from (2.2). a

2.4 Remark Theorem 2.3 can be applied to obtain an approximate solution of
(1.1) in the sense of (2.5) as follows:
(a) Choose & > 0, o >0, XeX,

(b) Compute Xy € Xq such that: P(x],a]) = min P(x.a]). If f(x) g.f(xl),
xeX
-0

£(R) - F(x)

stop, X solves (1.1).

(c) Choose a, such that a, > o and a 2

- é
(d) Compute Xy € X0 such that: P(xz,az) =;z¥1 P(x,az).
0

If a, of step (c) is too large, an &1 such that & <C-!1 <a, can be chosen
to replace «, and steps (a)-(b)-(c) are repeated. Also X may be replaced
when possible by some X e[i,x]] nX such that f(X) < f(X).

The next result shows that for a sequence of solutions {xi} of the
penalty problem (1.2) for an increasing unbounded sequence of penalty para-
meters {ai}, the sequence of penalties {Q(xi)} converges to 0 and the

sequence {f(xi)} converges to a lower bound for inf f(x), provided the
xeX

latter is finite. We do not require that the sequence {xi} have an
accumulation point here.

2.5 Theorem Let inf f(x) > -=, let {ai} be an increasing unbounded
xeX .

sequence of positive numbers, let {xi} be a corresponding sequence cf

points in X, not in X such that P(xi’ai) = min P(x,ai).
xeX
0
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Then
(2.7) 1im Q(x;) = 0 and 1lim f(x;) £ inf f(x).
{4 {o xeX

Proof By (2.1), the sequence {Q(xi)} ‘{s nonfncreasing and bounded below by
0 and hence converges to 4 2 0 and Q(x¢) 20, 1=1,2,... . If Q>0 we get

i from (2.5) by picking i sufficiently large such that a; > 2(F(X) -f(xf))/'d
; where feX, that Q< alx) £ Q/2 which is a contradiction. Hence Q=0 L
X and }ﬂu Q(xi) = 0. Now again by (2.1), the sequence {f(xi)} is nondecreas- ‘
. >c0 ';:‘-';:‘
. ing, and by (2.2) it is bounded above by inf f(x). Hence {f(x,)} converges
i - xeX . i
; to f and _-‘
fxg) & F < inf £(x) o
xeX : \
l To make the inequality in (2.7) an equality we need additional assump-
tions such as those given in the following corollary. '
I 2.6 Corollary If in addition to the assumptions of Theorem 2.5, f is 1
Lipschitz continuous on X,, that is for some K>0 ::;:;.:
- ‘:;‘.::*
‘e -.'.-'_;’
- (2.8) [£ly) - £(x)| < Klly-x]l, forall x, yeX, w3
" s
X e
) and there exists a constant u > 0 such that for each xeX, there exists
: an X(x)eX such that ';\
:
(2.9) llx - (), g walx) i
: then S
: (2.10) Hm f(x,) = inf £(x) Y
) {0 xeX Fo
. Proof For each x; there exists an i1 € X such that ;:-I';"-,:Z
: 2
JON




& 13
8000,

DR R A
2%a

- TP IPE
P S
‘l".'-' AR

e

[ & S
Ye

e
« ‘e

P R R i T LY ce e

”xi - ii ”2 f. uQ(xi)

Hence by (2.8) and (2.9)

(2.11) 0 < [flx;) - Flx) < Kllx; - Xill, < ku(x,)
Since by (2.7) 1lim Q(xi) =0, it follows from (2.11) that
{0
(2.12) lim f(ﬁi) = 1im f(xi)
{oe {0
From (2.11) and iie X we get the inequalities
fx.) + KuQ(x;) > f(X;) > inf f(x)
i i/ - §/ -
xeX

Taking the limit as i+« and using (2.7) gives

inf £(x) 2 lim £(x;) > inf f(x)
0

xeX xeX
Hence 1im f(xi) = inf f(x). a
fo xeX

2.7 Remark Condition (2.9) is satisfied if the feasible region X is convex
and satisfies an appropriate constraint qualification [9, Theorem 2.1]. In
particular (2.9) holds in the special case when Xg = R" and Xy s defined
by linear inequalities [9, Theorem 2.1].

We observe that in both Theorem 2.5 and Corollary 2.6 the sequence {xi}
need not have an accumulation point. A stronger result is obtained if {xi}
has an accumulation point.

2.8 Theorem Let inf > -o, and let {ai} be an increasing unbounded
xeX

sequence of positive numbers. Let {xi} be a corresponding sequence of points

in Xo not in X such that P(xi,ai) = min P(x,ai) with an accumulation point
xeX
0

e o S TS e A e LW
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.....

iexo. If f and Q are lower semicontinuous at X, then Q(x) = 0 and

x solves min f(x). Furthermore
XeX

(2.13) 1ima, Q(x;, ) =0 for x, + XeX,.
o gy 1 0

Proof Let "13 + Xe Xo. From (2.7) and the 1sc of Q we have

0=1im Q(xij) 2Q(x) >0

Joe
Hence Q(X) = 0 and XeX. From (2.7) and the 1sc of f we have

£(%) < 1m £(x; ) < Inf £(x)
oo J xeX

Since XeX, it follows that X solves min f(x). To establish (2.13)
xeX
note that

02 P(x; ,a; ) = P(X,ay ) = flxg ) - £(x) + a; Qx, )
1474y 1 Y DY
Hence
£(R) - Flx; ) 2 0y Qlx; ) 20
=y

By letting j+= and recalling that f 1is 1sc at X it follows that

| 1im a; Q(xi ) = 0. a
Joeo J
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3. Bounds and Existence for Dual Convex Programs

We consider in this section the convex primal program

(3.1) min f(x), X = {x|x R}, g(x)<0}
xeX

where f: R" +R, g: R" + R"™ are differentiable and convex on R". The
Wolfe dual [12,5] associated with this problem is
(3.2) max L(x,u) - vx, Y = {(x,u,v)|xeR", uaRT, VeR:‘_,

(x,u,v)eY
VxL(x,u) -v=0}

and the Lagrangian dual [4,1] is

(3.3) max inf L(x,u) - vx
(u,v)>0 xeR

where L{x,u):= f(x) + ug(x) is the usual Lagrangian. Note that (3.2) is
equivalent to
(3.2') max L(x,u) - xVxL(x,u), Z= {(x,u)|xeR", ue ﬂf,

(x,u)eZ
VxL(x,u)_>_0}

=Rn

Note that (3.1) can be identified with problem (1.1) by setting X N

0
and Xy = {x[g(x) < 0}.

Our primary objective here is to give simple conditions for the separate
existence of a solution to each of primal and Lagrangian dual problems and to
bound their solutions. Loosely speaking we shall establish existence of a
solution and a bound for the primal (Lagrangian dual) problem under a primal

and Wolfe-dual feasibility assumption together with a Wolfe-dual (primal)

constraint interiority assumption. Our principal tools will be the recent

e N S R A R e T T T T R T N N W N AT I U
..

)
>




DN N 29 L N AP BN Yt TRy " v — -
f (R A A N DA O . R A AR R ioiod S S AT A R S Jonh M S a0 /el i e TR

-11-

boundedness and existence results for monotone complementarity problems and
convex programs of [10] and the penalty function results outlined in the
previous section. We begin with an existence and boundedness result for the

H primal problem (3.1).

3.1 Theorem (Primal feasibility & Wolfe dual interior-feasibflity == Primal

solution existence-boundedness & zero duality gap with Wolfe dual) Let f

and g be differentiable and convex on R" and let (%,3) satisfy

XeX, (X,0)el, vxL(i.G) >0

Then there exists a primal optimal solution X to (3.1) which is bounded by

- -Gg(ﬁ)-+ﬁVxL(§.ﬁ)
Ixlly <4 (V,L(%,0));
i

(3.4)

In addition there exists no duality gap between the primal problem (3.1) and
the Wolfe dual (3.2), that is:

(3.5) min f(x) = f(x) = sup L(x,u) - vx
xeX (x,u,v)eY

Proof Consider the penalty function problem associated with (3.1)

(3.6) min f(x) + aeg(x)+
x>0

or equivalently

(3.6') min  f(x) + aez s.t.g(x)-2<0
(x,2)>0

The Wolfe dual associated with (3.6') is
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(3.7) max L(x,u) + 2 (ce-u-w) - vx
(x,u,v,w)

s.t. V.L(x,u) -v =000 -u-w=0,0,v,w20
which is equivalent to

(3.7") (max L{x,u) - xv,L(x,u)  s.t. V. L(x,u) 20, 08 2u20
X,u

Note that the only difference between (3.7') and (3.2') is the constraint
we > u. Now, for any € >0, the point (X, 2:= ee, i) satisfies a
"Slater" constraint qualification for the dual problems (3.6')-(3.7') for
a > JJiJ]_. Hence these probems have equal extrema and a solution

(x{a), z(a), ula)) such that x(a) is bounded by [10, Theorem 2.3]

G(-g(R) +ee) + )’EVXL(SE.G) +ce(ae-0d)

3.8
( ) ”X(d)”] b mi.n (VXL(Q’G))i
1

Since the left side of (3.8) does not depend on e, we can let €+ 0 in

(3.8) and we have

-Gg(R) + R, L(R,0)

(3.9) "x(a)”] i A A
min (VxL(x,u))i
i

Note now that by the weak duality theorem [5] applied to (3.1) and (3.3) we -
have o~

inf f(x) > L(X,0) - XV_L(X,d) > -» -
= X )
xeX

Hence for an unbounded increasing sequence of positive numbers {ai} exceed- e

ing ||G}|,, it follows [10, Theorem 2.3] that there exists a sequence of
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points {x(c,), ulag)} with x(a;) bounded as in (3.9), such that each "(“1)
solves the penalty function problem (3.6) with a = a; and (x(ai). u(ui))

solves its dual (3.7'). Since {x(a;)} 4s bounded it has an accumulation
point X which is bounded by (3.9). Since ez(a,) = e(g(x(a,))), is the penalty
term for (3.6'), 1t follows by Theorem (2.8) that eZ = eg(X), = 0, that X

solves min f(x) and that
xeX

(3.10) 1im o, ez{a, ) = 1im o, e(g(x(x; ))) =0 for x(a; )+ X
Fhudie Pais PR Al 1,70 1

J 3

Now we establish the zero duality gap. Let {ei} be any decreasing sequence
of positive numbers converging to 0 and let {uf} be an unbounded increasing
sequence of positive numbers chosen as follows:

o> sup L(x,u) - xV L{x,u) - ¢
(x,u)eZ x L

(By weak duality theorem)
< L(x(ei)s u(ei)) - x(ei)vxl-(x(e.')v u(ei))

(For some (x(ei), u(ei)) ¢l, by definition of sup)
< Lix(ay)s ulag)) - x(ag)v, Lix(a;), ulay))

(For oy sufficiently Jarge s.t. a,2 llu(e))ll,,
because (x(ai),u(ai)) solves max L(x.u)-xvxL(x.u)

s.t. V,L{x,u) 20, a;e 2 u20)

= f(x(ai)) + aiez(a‘)
(By equality of primal-dual optimal objective func-
tions of problems (3.6') and (3.7') with o = “1)

sup  {L(x,u) - xV,L(x,u)]|V,L(x,u) 20, a,e>u20}
(x,u)

A

sup L(x,u) - xVxL(x.u)
(x,u)eZ

NP I B I A 00 o g g g —— , . .
e ® . EN - - - L., .. - "t . N . .« ~ P -
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Since by (3.10), 1im o, ez(a; ) = 0 for x(a; )+ X, it follows that .
sup L(x,u) - xVxL(x.u) s f(x) = min f(x) g ; .

(x,u)eZ xeX -
We establish now an existence and boundedness result for the Lagrangian 5,23
dual problem (3.3).
3.2 Theorem (Wolfe-dual feasibility & primal interior-feasibility =o :;i
Lagrangian dual solution existence-boundedness & zero duality gap with primal) ;;ff
Let f and g be differentiable and convex on R" and let (X,i) satisfy: {Q:f
(3.11) XeX, (X,i)eZ, x>0, g(X) <0 i

There exists a dual optimal solution (u,v) to the Lagrangian dual (3.3)

which is bounded by e
N -Ug(X) + v, L(X,0 -
(3.12) 3,91, < X o
min {-g,(X), X;} Ay
i J AT
iaj ATt
P—ﬂ
In addition there is no duality gap between the primal problem (3.1) and the R
Lagrangian dual (3.3), that is: 3f.£
U
[N |
(3.13) inf f(x) = max inf L(x,u) - xv —
xeX (u,v)20 xeR" o
P
Proof For B > 0 consider the bounded version of (3.1) g'f;

(3.14) min f(x) s.t. g(x) <0, B >x2>0

and its Wolfe dual

.......................
......

.......
................... et .

P I . . ey e
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(3.15) max  L{x,u) = vx + w(x - Be)
(x,u,v,w)

s.t. VL(xu) -v+w=0,uv,w20

or equivalently

(3.15") max L(x,u) - xV,L(x,u) - Bew
(x,u,w) B
s.t. VXL(X.U) +w = O‘ U, w 3 0 ;'.‘ s d

which again s equivalent to 'f'-,-i;_ *

(3.157) max L(x,u) - xV L(x,u) - Be(-,L(x,u)), i
(X,U -
u>0

which is nothing other than an exterior penalty Afunct'lon formulation for the
Wolfe dual (3.2') with penalty parameter 8. Thus the bound B8 on the =-norm
of the primal variable x becomes a penalty parameter on the Wolfe dual,

Now for any ¢ > 0, the point

(X, U, Ww:= ee)

satifies a Slater constraint qualification for the dual problems (3.14}-(3.15')
for B > ||X]|_. Hence [10, Theorem 2.3] there exists (x(8),u(g), v(B), w(B))

which solves the dual problems {3.14)-(3.15) with equal extrema. For any such
solution, (u(B),v(B)) is bounded by [10, Theorem 2.2]

-Ug{X) + geee + ivxl.(ii.fi)

(3.16) i), viB)l, <
min {'91 (i): ij}
L

Since the left side of (3.16) does not depend on ¢, we can let e+ 0 in

(3.16) and we have
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-ug(x) +ivxl.($i,ii)

min {-g,(X), X}
i

(3.17) llu(g), v(B)Il; <

Define now
} (3.18) ¢(u,v):= inf L(x,u) - vx
} xeR"
(3.19) Y(u,v,w):= inf L(x,u) - vx +wx
ﬁ XeR
Then
- (3.20) ¢ (u,v) = wlu,v,0)
h"_‘ Note now that by the weak duality theorem [5]
l o > f(x) sup L(x,u) - xVxL(x,u)
o (x,u)eZ

Hence for an unbounded increasing sequence of positive numbers {B,} exceed-

ing ||X]]_, it follows [10, Theorem 2.3] that there exists a sequence of

o points {x(Bi),u(Bi). v(Bi),w(Bi)} which solve the dual pair (3.14)-(3.15)

for B8 = B;, giving equal extrema and such that {"(Bi)‘ V(Bi)} is bounded by
(3.17). Since ew(ei) =e(-VxL(x(B1.),u(Bi)))+ constitutes the penalty term
for (3.15"), it follows by (2.7) that {ew(Bi)} converges to zero and since
w(8;) 2 0, it follows that {w(B;)} also converges to w = 0. Let (i,v,0)

be an accumulation point of the bounded sequence {U(Bi)' V(31)'"(31)}- Now

we have
c:= L(X,u) - iVxL(i,G) < inf f(x) (By weak duality)
xeX
, < fx(gy)) (Since x(B;)eX) ]
. :::.‘1
2 < LOx(B,), ulB))) - v(B,)x(8,) + w(B,)x(8,) 2
~ T Y
(Since u(Bi)g(x(Bi))=O,V(Bi)x(Bi)=0 and w(Bi)x(Bi);O) ::'




......
oS -

S L, ulBy)) - v(By)x +w(B)x  ¥xeR"

(Since v,L(x(B;), u(By)) ~v(B,) +w(B;) = 0
L(x, u(8;)) - v(By)x +w(B,)x {s convex in x)

In the 1imit we have

c < L(x,d) - Vx +wx yxeR"
and so

c g Inf L{x,d) - ¥x + wx = p(u,v,w) = ¢(a,
xeRM

v)

Since ¢(u,v,w) 1s finite, it follows by Theorem A.1 of the Appendix, that
Ylu,v,w) 1s upper semicontinuous at (u,v,w) with respect to RTZ“. Now
let {ej} + 0. It follows by the upper semicontinuity of ¢(u,v,w) at

(u,v,w) that there exists a subsequence {8; } ¢+ = of the unbounded increas-
J

ing sequence {8,} such that {“(513)?"(31:‘)""(31j)} converges to

(u,v,w=0) and

(3.21) o(u,v) + €y = plu,v,w) + €
> ylu(g, ), v(B; ), w(B, ))
T Ty

(By usc of v at (u,v,w))
= inf L(x, u(By ) -v(By Ix+w(B; )x
X h] J J

(By definttion of y)

= L{x(B; ), u(B; ) -v(B, )x(8B
1j 1j v( 1j)x 1j)+w(31J)x(81j)

(Since x(B, ) minimizes L(x,u(B, ))-v(B, \x +w(8, )x)
s s R LAY
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2 fx(8; ))
J
(Since u(B; )g(x(B, ))=0,v(B; Ix(8, )=0
J J J J
and w(g, )x(B; )20)
J J
2 L{x(8; ), u(sy ))-vx(B; ) for (u,v) >0
J J J
(Since g(x(Bij)go and x(Bi_)zo)
J
> ¢(u,v) (By definition of ¢)

Note that for {Bi } 4+ =, the sequence {f(x(Bij))} of minima of (3.14)
j .

with B = !31 » constitutes a nonincreasing sequence bounded below by
j .

inf f(x). Hence {f(x(Bi )} converges and
xeX J

(3.22) inf f(x) < lim f(x(B_'J))

xeX Joro

Letting €5+ 0 1in the string of inequalities of (3.21) gives

¢(u,v) > Tim f(X(Bij)) 2 ¢(u,v)  ¥(uwv) 20
Joro

I
Lt e
L Al

Hence

o (3.23)  o(u,v) = Vim f(x(g; )) = max ¢(u,v) = max inf L(x,u) - vx s
o e i (u,v)20 (u,v)>0 xeR™ Ui
- o
T and (u,v) solves the Lagrangian dual problem (3.3). The bound (3.12) on "‘:i‘
(u,v) follows from (3.17). To show a zero duality gap,' just note that _‘
"\'321
inf £(x) < 1im f(x(8; )) = max o(u,v) g inf f(x) ]

F" xeX oo J (u,v)20 xeX
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where the first inequality follows from (3.22), the equality from (3.23)
and the last inequality from the weak duality theorem for the Lagrangian
dual [4,1]. Hence

inf f(x) = max ¢(u,v) 0
xeX (u,v)>0

We remark that the existence part of this theorem and the zero duality

gap result can also be derived as a consequence of the strong duality theorem
of Lagrangfan duality (e.g. [4, Theorem 3]) which is based on the entirely

h different argument of a separating hyperplane. Our explicit bound on the
dual optimal vartables (3.12) however does not follow from Lagrangian duality

and 1s based on the recent boundedness results of [10].

Ty




i 4. Penalty Functions in Linear Programming

In this final section we show how to use penalty function results to
determine precisely the value of the parameter in the quadratic perturbation
‘l' to a linear program [6,7,8] in order to obtain a solution to the perturbed

problem which is dual feasible to within any preassigned tolerance. This

is a practical and important issue which has not been completely resolved
“ before in the iterative successive overrelaxation (SOR) methods for solving
huge sparse linear programs [8].

We consider the primal linear program

(4.1) max cx s.t. Ax < b, x20
X

where A 1is given mxn real matrix, ceR" and beR'", and its dual
i (4.2) min bu  s.t.v=Au-c,uv 20
(_U,V)
f‘:i In [8] it has been shown that perturbed primal program
R (4.3) max cX - Fxx  s.t. Ax <b, x20
o X
\ is solvable for all ee (0,e] for some & if and only if (4.1) is solvable,
;_ in which case the unique solution X of (4.3) for ece (0,8] {s independent
' of ¢ and is the point in the solution set of (4.1) with least 2-nomm. If
‘- we consider the Wolfe dual to (4.3) we obtain
v (4.4) min bu + %xx s.t. c - ex - ATu +v=0u,v>0
(x,u,v)
Elimination of x through the constraint relation
b, (4.5) X =lg(-ATU+v+C)
L;:

R




-2
gives
1 T 2
(4.6) min  bu + 2-€-||-A utv +c||2

(u,v)>0

which is precisely the exterior penalty function associated with the dual
linear program (4.2) with penalty parameter %u Using standard exterior
penalty function results, one needs that ¢ -+ 0 1in order for solutions
(ule), v(e)) of (4.6) approach a solution of the dual linear problem (4.2).
However by computing X from (u(e),v(e)) through the relation (4.5), it
turns out [8] that for €€ (0,€], X is independent of € and is the unique
point in the solution set of (4.1) with least 2-norm. In [8] SOR methods
were prescribed for solving (4.6) for € sufficiently small and then comput-
ing x from (4.5). Very large sparse problems (n = 20,000, m = 5,000) were
solved by this technique, without knowing what & {s, but merely by decreas-
ing € until certain approximate optimality criteria were met. We would
1ike to show here that by solving the penalty problem (4.6) for only two
values of €, we can satisfy the Karush-Kuhn-Tucker optimality condifions
for the linear program to any preassigned tolerance. In fact such a solution
will be primal feasible, satisfy the complementarity conditions between primal
and dual linear programs, and satisfy dual feasibility to any required toler-

ance. More specifically we have the following.

4.1 Theorem Let & >0, e, >0, Tlet (G,¥) be dual feasible, that is

A

§aAd-c 20, 320, and let (u(eg),v(ey)) be a solution of (4.6) with

€ =¢. If bl gbule,) then (G,7) solves the dual problem (4.2), else for

8

(4.7) €, <€ and €, < ————
2 1 2 =pi- bu(e1)

o ff i

g
)
‘a A’L"l’_’ '-'.l '.! y

£«
’,
D

-~
--.

/ I‘.A "'
2"
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l it follows that
1,7 2 T
(4.8) z|[l-A u(sz)+v(e2)+c|| 5 8, bu(e,) g min {bulA u>c,u>0}
2 u -

i where (u(ez),v(ez)) is a solution of (4.6) with ¢ = €y Furthermore for
x(ez) defined by

(4.9) x(ez):= -2—2(-ATu(e2)+v(ez)+c)

we have that the Karush-Kuhn-Tucker conditions for the linear program (4.1)

. are satisfied to within a tolerance & as follows

x(t-:z) >0, Ax(ez) < b, u(ez) >0, v(ez) >0

(4.10) u(ez)(b-Ax(ez)) = 0, v(ez)x(ez) = 0

1 CAP PP N

1
I-8Tu(e,) +vle,) +cll, < (28)2

€ .

TERS SRR

Proof The first part of the theorem, (4.7)-(4.8), follows directly from
" Theorem 2.3. The last part of the theorem (4.10) follows from (4.8) and

- from the Karush-Kuhn-Tucker optimality conditions for (4.6) with ¢ = €ps
o that is

- L

i b - Y A(-A'uley) +v(ey) #¢) 20, ule,) 20

o~ u(e)(b - - A(-ATule,) +v(e,) +¢) = 0

A €, 2 2

s (4.11)

™ L (-ATue,) +v(e,) +¢) 2 0, vie,) 20

1 vleg) T

> —e-z—(-A u(e,) +v(e,) +c) = 0

"—:-:

e These conditions together with (4.8) and the definition (4.9) imply (4.10). O
A

l\:

A off X

-
.
.
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Appendix )
A.1 Theorem Let y(s):= inf h(s,t) where h: Sx T+R, ¢ # S < RK, RO
: teT PGy
I 64T cR" and h is upper semicontinuous on S with respect to S for ; 3
each fixed teT. Then ¢ 1is upper semicontinuous with respect to S at i
each SeS for which y(s) > -,

Proof Suppose ¢ 1is not usc at S with respect to S. Then
:A‘ (A1) Je > 0: ¥6 >0 3Js(8)esS: ||s(s)-5]} <&, v(s(8))-w(s) >¢
R Let ¢ be fixed. Since -= < y(s) = 1n; h(s,t), there exists t(e)eT
te
such that
i (A.2) hE, tle)) < w(E) + €
- Combining (A.1), (A.2) and the definition of ¥ gives
I h(3, tle)) < w(3) + € £ w(s(8)) < h(s(8), tle))
(A.3) ¥6 > 0, for some s(8)eS such that ||s(8)-§[<$
Since h(s, t(c)) 1is usc with respect to S at § ¢ S we have
> |
- (R.8) ¥y >0, 36(y) > 0: ¥seS |ls~5]| < &{y), his, t{e)) < h(s, tle))+v
;
Combining (A.3) and (A.4) gives
i

(R.5) h(s, t(e)) < w(s) +e<h(s,tle)) +yv V>0

Since § and ¢ do not depend on v, (A.5) gives a contradiction by letting

! y approach zero. Hence ¢ is usc at § with respect to S. D
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